Data collection Enraf-Nonius CAD-4 4834 reflections with $I > 3\sigma(I)$ diffractometer $\theta_{\rm max} = 25^{\circ}$ $\omega/2\theta$ scans $h = 0 \rightarrow 12$ Absorption correction: $k = -15 \rightarrow 15$ empirical via ψ scans $l = -28 \rightarrow 28$ (Fair, 1990) $T_{\rm min} = 0.716, T_{\rm max} = 0.825$ 9841 measured reflections 9841 independent reflections

Refinement

Refinement on FR = 0.054wR = 0.060S = 1.164834 reflections 649 parameters H atoms not refined $w = 1/\sigma^2(F)$

3 standard reflections every 300 reflections intensity decay: 2.3%

 $(\Delta/\sigma)_{\rm max} = 0.020$ $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

Mo—Cul	2.709 (2)	Cu1—P1	2.219 (3)
MoCu2	2.729 (2)	Cu2-S1	2.348 (3)
Mo-Cu3	2.777 (2)	Cu2	2.278 (3)
Mo—S1	2.255 (3)	Cu2-S4	2.457 (3)
Mo-S2	2.257 (3)	Cu2-P2	2.220(3)
Mo—S3	2.252 (3)	Cu3S2	2.297 (3)
Mo-O	1.716 (9)	Cu3S3	2.301 (3)
Cu1—S1	2.343 (4)	Cu3-P3	2.305 (3)
Cu1—S2	2.293 (3)	Cu3—N	2.103 (9)
Cu1—S4	2.459 (3)	S4—C1	1.741 (9)
S1—Mo—S2	108.15 (9)	S2Cu3P3	112.7 (2)
S1-Mo-S3	107.2(1)	S2Cu3N	111.5 (2)
S1—Mo—O	110.3 (2)	S3Cu3P3	104.2(1)
S2—Mo—S3	106.3 (1)	S3—Cu3—N	112.3 (2)
S2-Mo-O	112.4 (3)	P3Cu3N	112.2 (2)
S3—Mo—O	112.2(2)	Mo-Sl-Cul	72.16 (8)
S1-Cu1-S2	104.0 (2)	Mo-S1-Cu2	72.68 (7)
S1—Cu1—S4	92.0 (2)	Cu1-S1-Cu2	83.5 (2)
SI-Cu1-PI	123.0(1)	Mo-S2-Cul	73.08 (8)
S2—Cu1—S4	112.87 (9)	Cu1—S2—Cu3	96.5 (2)
\$2-Cu1-P1	119.2 (2)	Mo-S3-Cu2	74.08 (7)
S4—Cu1—P1	102.5 (2)	Mo-S3-Cu3	75.16 (9)
S1-Cu2-S3	103.3 (2)	Cu2S3Cu3	97.1 (2)
S1—Cu2—S4	91.9(1)	Cu1-S4-Cu2	78.9 (1)
S1-Cu2-P2	126.7 (2)	Cu1-S4-Cl	112.5 (3)
S3-Cu2-S4	112.8(1)	Cu2-S4-C1	113.6 (4)
S3—Cu2—P2	110.4 (1)	Cu3-N-Cl	126.5 (6)
S4—Cu2—P2	110.5(1)	Cu3—N—C5	115.0 (6)
S2-Cu3-S3	103.4 (2)		

The structure was refined by full-matrix least-squares techniques with anisotropic displacement parameters for non-H atoms. H atoms were placed in calculated positions and not refined. Structure solution and refinement were carried out on a COMPAO PROLINEA 4/50 computer using the MolEN (Fair, 1990) program package. Other programs used included OR-TEPII (Johnson, 1976) for the molecular graphics.

This research was supported by grants from the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, and the National Sciences Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1304). Services for accessing these data are described at the back of the journal.

References

Du, S.-W. & Wu, X.-T. (1994). Acta Cryst. C50, 500-502.

- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
- National Laboratory, Tennessee, USA. Zhu, N.-Y., Du, S.-W., Chen, P.-C. & Wu, X.-T. (1992). J. Cluster Sci. 3, 201-218.
- Zhu, N.-Y., Zheng, Y.-F. & Wu, X.-T. (1990). J. Chem. Soc. Chem. Commun. pp. 780-781.

Acta Cryst. (1997). C53, 1543-1545

trans-Tetracarbonylbis[tris(4-chlorophenyl)phosphine-P]molybdenum(0)

OMAR BIN SHAWKATALY,^a ARUMUGAM UMATHAVAN,^a KUPPUKKANNU RAMALINGAM.^a[†] HOONG-KUN FUN^b and ABDUL RAZAK IBRAHIM^b

^aChemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: omarsa@usm.my

(Received 14 March 1997; accepted 24 June 1997)

Abstract

As a result of its trans geometry, the title compound, $[Mo{(C_6H_4Cl)_3P}_2(CO)_4]$, has short Mo-P bonds [mean value 2.483(1)Å] in spite of the presence of bulky chloro-substituted phenyl rings. The Mo atom displays nearly perfect octahedral coordination. Average Mo-C and C-O distances are 2.021(5) and 1.141 (6) Å, respectively.

Comment

The unit cell of the title compound, (I), contains two independent molecules with their Mo atoms lying on inversion centres (Fig. 1). Each Mo atom displays octahedral coordination. The two chloro-substituted phosphine ligands are trans with respect to each other, with an average Mo-P distance of 2.483(1) Å, which is shorter than comparable values in $[Mo(CO)_5PPh_3]$ [2.560(1) Å; Cotton, Darensbourg & Ilsley, 1981], [Mo(CO)₅{P(4-

[†] On leave from: Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India.

Fig. 1. Displacement ellipsoid plot (50% probability) of compound (1) with the atom-numbering scheme. H atoms are shown as spheres of arbitrary radii. Each Mo atom lies on an inversion centre.

 $CH_3C_6H_4)_3$] [2.558 (1) Å; Alyea, Ferguson & Somogyvari, 1983] and *cis*-[Mo(CO)₄(PPh₃)₂] [2.577 (2) Å; Cotton, Darensbourg & Klein, 1982].

Comparison of the mean Mo—C and C—O distances of 2.021 (5) and 1.141 (6) Å, respectively, in (I) with those of 2.059 (3) and 1.125 (5) Å, respectively, in Mo(CO)₆ (Mak, 1984) indicates stronger bonding due to the back-bonding abilities of the *trans*-tris(chlorophenyl)phosphines. The carbonyl groups are almost at right angles to each other (C—Mo—C 87–93°) and form planar Mo(CO)₄ units. One of the chlorophenyl groups is parallel to the Mo(CO)₄ plane which alleviates the steric strain and is exemplified by the relatively low C7—P1—Mo1 angle of 111.8 (2)°.

The mean P—C bond length is 1.837(5) Å which compares well with the values reported for free

tris(4-chlorophenyl)phosphine [mean value 1.834 (2) Å; Shawkataly, Singh, Sivakumar & Fun, 1996] and PPh₃ [1.831 (2) Å; Dunne & Orpen, 1991; Daly, 1964]. The bond parameters associated with the phenyl rings are normal.

Experimental

Compound (I) was synthesized by refluxing an ethanolic solution of $Mo(CO)_6$ and tris(4-chlorophenyl)phosphine (1:2 ratio) in the presence of NaBH₄ as a catalyst for about 1 h under dry nitrogen gas. Suitable single crystals were obtained by slow evaporation of a solution of (I) in a mixture of dichloromethane, *n*-heptane and toluene (2:1:1).

Crystal data

$[Mo(C_{18}H_{12}Cl_3P)_2(CO)_4]$	Mo $K\alpha$ radiation
$M_r = 939.17$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 40
PĪ	reflections
a = 10.725(1) Å	$\theta = 5.38 - 12.43^{\circ}$
b = 11.126(2) Å	$\mu = 0.841 \text{ mm}^{-1}$
c = 18.368 (3) Å	T = 293 (2) K
$\alpha = 93.41 (1)^{\circ}$	Rectangular slab
$\beta = 90.05 (1)^{\circ}$	$0.30 \times 0.26 \times 0.14$ mm
$\gamma = 112.61 (1)^{\circ}$	Yellow
$V = 2019.1 (5) Å^3$	
Z = 2	
$D_x = 1.545 \text{ Mg m}^{-3}$	
D., not measured	

Data collection	
Siemens P4 diffractometer	$R_{\text{int}} = 0.041$
$\theta/2\theta$ scans	$\theta_{\rm max} = 27.51^{\circ}$
Absorption correction:	$h = -1 \rightarrow 13$
empirical ψ scans	$k = -14 \rightarrow 13$
(XSCANS; Siemens, 1994)	$l = -23 \rightarrow 23$
$T_{\rm min} = 0.691, T_{\rm max} = 0.892$	3 standard reflections
10659 measured reflections	every 97 reflections
9197 independent reflections	intensity decay: <3%
4804 reflections with	
$I > 2\sigma(I)$	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
$R[F^2 > 2\sigma(F^2)] = 0.048$	$\Delta \rho_{\rm max} = 1.03 {\rm e}{\rm \AA}^{-3}$ (0.93 Å
$wR(F^2) = 0.121$	from Mo2)
S = 0.810	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
9197 reflections	Extinction correction: none
577 parameters	Scattering factors from
All H atoms refined	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Mo1-C19	2.017 (5)	P2—C33	1.825 (5)
Mol-C20	2.024 (5)	P2—C27	1.838 (5)
Mol—Pl	2.4900 (12)	P2C21	1.844 (5)
Mo2-C40	2.017 (5)	CII—C4	1.743 (5)
Mo2-C39	2.029 (6)	Cl2C10	1.732 (5)
Mo2-P2	2.4760 (12)	Cl3—C16	1.746 (5)
P1-C13	1.836 (4)	C14C24	1.739 (6)
P1—C7	1.838 (5)	CI5-C30	1.750 (5)
P1—C1	1.843 (5)	Cl6—C36	1.733 (5)
C19—Mo1—C20	90.6 (2)	C7-P1-Mol	111.85 (15)
C19—Mo1—P1	89.45 (14)	C1-P1-Mol	116.71 (15)
C20-Mo1-P1	87.15 (13)	C33—P2—C27	103.9 (2)
C40-Mo2-C39	89.8 (2)	C33—P2—C21	103.0 (2)
C40—Mo2—P2	88.86 (13)	C27—P2—C21	97.8 (2)
C39-Mo2-P2	87.00 (14)	C33-P2-Mo2	110.96 (14)
CI3—PI—C7	102.3 (2)	C27—P2—Mo2	118.6 (2)
C13—P1—C1	100.5 (2)	C21—P2—Mo2	120.3 (2)
C7—P1—C1	103.8 (2)	O3-C39-Mo2	177.5 (5)
C13-P1-Mol	119.5 (2)	O4C40-Mo2	179.4 (5)

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All the H atoms were located from difference Fourier maps and refined isotropically. Computer program *PARST* (Nardelli, 1983) was used for geometrical calculations.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grants under Nos. 09-02-05-6034 and 09-02-05-6024. KR thanks Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1322). Services for accessing these data are described at the back of the journal.

References

- Alyea, E. C., Ferguson, G. & Somogyvari, A. (1983). Organometallics, 2, 668-674.
- Cotton, F. A., Darensbourg, D. J. & Ilsley, W. H. (1981). Inorg. Chem. 20, 578-583.
- Cotton, F. A., Darensbourg, D. J. & Klein, S. (1982). Inorg. Chem. 21, 294–299.
- Daly, J. J. (1964). J. Chem. Soc. A. pp. 3799-3810.
- Dunne, B. J. & Orpen, A. G. (1991). Acta Cryst. C47, 345-347.
- Mak, T. C. W. (1984). Z. Kristallogr. 166, 277-281.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Shawkataly, O. B., Singh, J., Sivakumar, K. & Fun, H. K. (1996). Acta Cryst. C52, 2243-2245.
- Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1545-1547

Tetracarbonyl[2-(diphenylphosphino)aniline-*N*,*P*]molybdenum(0)

LUTZ DAHLENBURG, KONRAD HERBST AND GÜNTER LIEHR

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany. E-mail: dahlbg@anorganik.chemie.uni-erlangen.de

(Received 15 April 1997; accepted 19 May 1997)

Abstract

In the title complex, $[Mo(CO)_4(C_{18}H_{16}NP)]$, coordination about the central metal is distorted octahedral. The five-membered MoNC₂P chelate ring has an 'envelope' conformation with the Mo atom deviating from the plane defined by the four non-metal atoms.

Comment

The title compound, (I), $[Mo(CO)_4\{(C_6H_5)_2PC_6H_4-NH_2\}]$, was prepared as part of a series of our continuing studies on transition metal derivatives containing NH, OH and SH functional PR_3 ligands (Dahlenburg, Herbst & Kühnlein, 1997; Dahlenburg & Kühnlein, 1997; Dahlenburg & Herbst, 1997; Dahlenburg, Herbst & Liehr, 1997). This crystal structure was determined in order to make comparisons with related tetracarbonylmolybdenum complexes bearing bidentate ligands with NH₂ and P(C₆H₅)₂ donor groups.